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Abstract. A unification of recently proposed models describing population dynamics is presented. We study
the effect of different factors, like environmental conditions, concentration of individuals in a given area and
migration strategies, on population dynamics. Moreover, we show that a population occupying a smaller
area is more susceptible to extinction, which is a well known biological fact. We solve the model using
Monte Carlo simulations and the mean-field approach. Constructing flow diagrams we find the optimal
strategy in population dynamics.

PACS. 87.10.+e General theory and mathematical aspects – 02.70.Rr General statistical methods

1 Introduction

Why individuals of one species are able to survive in a
given habitat while in another environment they become
extinct? This is probably the simplest ecological question
one can ask. Although many factors can influence popu-
lation viability, this paper focuses mainly on the role of
population size. More specifically, we address the “mini-
mum viable population (MVP)” question: As population
size decreases, at what point does the risk of extinction
become unacceptably high?

Beginning with Hooper [1], Shaffer [2], and Ginzburg
et al. [3], conservation biologists have argued that the pro-
cess of extinction is best viewed as stochastic, and that en-
dangerment should therefore be defined probabilistically,
that is, in terms of the probability of persistence over time.
For example, MVP might be defined as the smallest iso-
lated population sizeN at which probability of persistence
over the next 1000 years is 99% [2].

To make the idea of MVP clearer, let us quote here a
simple example. We toss N coins – representing N indi-
viduals – and say that the population becomes extinct in
a given “year” if all N coins are tails. Is it possible that
our “coin” population will die out? Yes, but only if we are
very patient or our collection of coins is small. On average,
this rare event will happen after 2N “years”. If we have
100 coins we will have to wait about a million “years”, but
if we take only 10 coins the population will, on average,
become extinct already after a thousand “years”!

Extinction of natural populations is a much more
frequent event than the coin example results suggest.
However, a natural population is not just a set of non-
interactive individuals. In 1931, Allee [4] proposed that
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intraspecific cooperation might lead to inverse density de-
pendence. After 70 years this idea is still attractive and
there is widespread evidence for the Allee effect in mam-
mals, birds and fish (for a review see [5]). Factors involved
in generating inverse density dependence are numerous,
but the difficulty of finding a partner to mate in a low
density population is the most cited one. The major con-
sequence of the Allee effect is the existence of the criti-
cal density below which a population is likely to become
extinct.

Let us return to our coin example. This time we toss
the coins on a large chessboard (in general – on a square
lattice). If a coin (individual) is the only occupant of a
given field on the chessboard or other occupants are tails
we turn it to the tails side regardless of the actual outcome
of the toss. Obviously, now we have to wait for population
extinction much shorter then previously. For very low pop-
ulation densities, when all coins fall on different fields the
population ceases to exist almost immediately, even if N
is large.

It is not easy, if at all possible, to recognize which fac-
tor is involved in generating inverse density dependence in
natural populations [6]: genetic inbreeding leading to de-
creased fitness, demographic stochasticity (i.e. individual
probability of death in a given year) or shortage of recep-
tive mate encounters when the population density is too
low, etc. Moreover, some of these factors can be rather
weak unless the population density is low. Probably for
these reasons, in spite of numerous physical models de-
scribing biological evolution (for review see [7,8]), little
attention has been paid to the idea of the minimum vi-
able population or the Allee effect. However, the implica-
tions of the Allee effect are very important in most areas
of ecology, evolution and population dynamics. Moreover,
the existence of the critical concentration, below which the
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population will die out, is a very interesting phenomenon
from the physical point of view.

In this paper we present a microscopic model of pop-
ulation dynamics in which the Allee effect appears very
naturally and the minimum viable population can be de-
termined. Furthermore, we ask and give possible answers
to the question: “Is there something that a population can
do to prevent extinction?” One strategy could be migra-
tion. Theoretical and empirical studies of seed dispersal
have shown that whether a seed remains near the mater-
nal plant or is dispersed from it influences the fitness of the
seed (reviewed in [9]). In case of animals, migration strate-
gies were mainly investigated on insects, because many
insect species (e.g. pests) migrate from the parental area
before reproduction [10]. On one hand, selection should
favor migration because it allows finding new unsettled
areas and giving more offspring. On the other hand, most
of the migrants die. Thus, there is an open question: “is it
better to stay or to go?”. Quite recently it was found that
in the case of an infinite population the optimal migration
rate may not exist [11]. However, in case of small popu-
lations the migration strategy might be very important.
For example, individuals staying near parental area can
aggregate to high density clusters. It was shown recently
that clustering prevents population extinction [12], which
seems to be connected with the Allee effect. In such a case
the MVP can be much lower than in the case of uniformly
distributed population. In this paper we go even further
and show in which environmental conditions it is better
to stay then to go. To sum up, we look for the optimal
strategy for population survival.

Numerous models of population dynamics with the
Allee effect have been proposed (for a review see [5])
and different survival strategies investigated (e.g. [13–15])
by biologists and mathematicians. However, those models
were mostly based on differential equations for global vari-
ables. For such mean-field type models usually some ana-
lytic results can be found, but they neglect many details
which may be crucial. Physicists know that it is a good
policy to start from a microscopic model and establish
which details are essential to understanding macroscopic
regularities, even if such a model can be solved only by
computer simulations.

Extinction of small populations in small habitats using
the Penna model (see e.g. [7]) was investigated through
Monte Carlo simulations by Pál [16]. He found that the
average time until the population dies out grows with the
size of the habitat and survival chances hardly depend on
the population size. It is a well known biological fact [17]
that small area decreases the chances of survival, but it is
also known that the size of the population is one of the
most important factors influencing population extinction
at small sizes (or at low densities) [5].

Another microscopic model that allows investigating
the behavior of small populations in a given area was pro-
posed few years earlier. In that paper [18] we studied the
influence of environmental conditions on population dy-
namics. We showed, using Monte Carlo (MC) simulations,
that there was some critical adaptation below which the

population could not survive in a given area. To sepa-
rate spatial from genetic effects, we also investigated the
same model without selection pressure [19]. In this case we
were able to solve the model for an infinite system via the
mean-field approach (MFA). Using MFA we constructed
flow diagrams for one and two dimensions and showed
the existence of the critical adaptation, as well as, of the
carrying capacity and the minimum viable population. In
presence of MFA results, no Monte Carlo simulations were
conducted. Quite recently we presented a similar model of
population dynamics, applying new rules for moving and
mating [20]. We solved this model using both mean-field
(for an infinite system) and Monte Carlo (for finite sys-
tems) approaches. We showed, through MC simulations,
that a larger area increases the survival chances of a pop-
ulation. In that paper we also introduced two migration
strategies – “to stay” and “to go”, i.e. migrate from the
parental area before reproduction. Unfortunately, we were
not able to give a clear-cut answer which strategy should
be preferred by a population. We investigated our model
in two cases – with and without selection, and we showed
that natural selection increases the survival chances of a
population.

In the present paper we propose a unification of the
models proposed earlier (reviewed in Sect. 2). We sepa-
rate spatial from genetic effects to study influence of dif-
ferent factors on population dynamics. In Section 3 we
present MFA results for finite lattices in those cases for
which the approach is reasonable. The results for finite
lattices (previously results only for infinite lattices were
presented [19,20]) allow us to show analytically that sur-
vival probability increases in a larger area. This result is in
agreement with biological [17] and simulation [20] obser-
vations. In Section 4 we present Monte Carlo results and
construct flow diagrams, which allow us to give a clear-cut
answer which of the analyzed migration strategies should
be preferred by a population. We would like to point out
that in the earlier papers we did not calculate flow dia-
grams using MC simulations. In the conclusions (Sect. 5)
we show that the obtained results agree very well with
ecological observations and choose the optimal survival
strategy.

2 The general model

We consider a square L × L lattice with hard boundary
conditions. No more than one individual may occupy a
lattice site. Each individual is characterized by its geno-
type Gi, which in our model is represented as a dou-
ble string (two gametes) of LG loci. At each locus there
might be either a zero or a one. Zeros correspond to
recessive and ones to dominant allele. We assume total
domination of an allele denoted by 1; thus the phenotype
Fi = {F 1

i , F
2
i , . . . , F

LG
i } of ith individual is constructed

in the following way [18,20]. If at a given locus there are
two zeros (recessive homozygote) then we put zero at the
corresponding phenotype site. Otherwise (heterozygote or
dominant homozygote) we put 1.
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The selection pressure is realized by calculating the
survival probability pi as a correlation of an individual
phenotype with the environmental optimum [18,20]. Such
an idea of an individual’s survival probability has been
already used in the literature and called adaptation or fit-
ness. In reference [20] we have found that selection pres-
sure increases the survival chances of a population. In this
paper we investigate precisely the role of spatial factors
and will not consider natural selection. In this case no
rules for the construction of an offspring’s genotype are
needed, since each individual has the same survival prob-
ability p [20]. In the previous papers [18,20] an offspring’s
genotype was constructed in two different ways. In refer-
ence [18] particular features were inherited independently,
whereas in reference [20] an offspring’s genotype was con-
structed using recombination.

In our model we consider the sexual reproduction of
hermaphrodities. In order to procreate the initiating indi-
vidual must first of all stay alive, which is realized with
probability p, then move to an adjacent empty site and
find a partner in the nearest neighborhood (nn) of the
new site. The condition that only the individual which
moved could mate represents all acts necessary to breed
in real life [18]. Moreover, this procedure permits us to
avoid invoking the Verhulst factor, which usually must
be used to account for the limited resources of the habi-
tat [7,21]. Once the partner is found, the pair produces
three offspring and the parents die. This is not as unreal-
istic as it may sound; there are well documented [7] exam-
ples of species that behave in this way (e.g. pacific salmon,
bamboo plants). Alternatively we could say that the par-
ents stay alive and produce only one offspring. This would
probably be more natural but inconsistent with our ear-
lier model [18]. Moreover, to avoid immortality the model
would require the inclusion of an aging mechanism (like
in [21]). In our model only a non-reproducing individual
may live forever. This seems to be quite an extreme fea-
ture, but may be (at least to some extent) explained by
the trade-off between longevity and fecundity [7,22].

Two different rules for the moves and search have been
proposed. In references [18,19] some simulations and the
mean field approach for the model with the “myopic ant”
rule was presented. In the “myopic ant” rule the choice of
the direction to move is made randomly from the free nn
sites. Analogously, the partner is chosen randomly from
the occupied nn sites. Recently [20] some results for the
“blind ant” were also presented. In this case the choice of
the direction is made randomly from all nn sites. If the
attempt is unsuccessful there is no second choice. Thus
the “blind ant” represents a population with less active
individuals. In this paper we construct the general model,
which includes both “ant’s” rules. We present new results
and show differences between these two rules.

We will also discuss two migration strategies. The first
migration strategy (“to stay”) is realized by putting two
offspring on the dead parents’ sites and the third one in the
site occupied by the initiating individual before he moved.
In the second one (“to go”) the sites for the offspring are
chosen randomly in the whole lattice. One of the aims of

this paper is to show which migration strategy should be
preferred by the population.

We can now formulate the general algorithm describing
our model:

1. Put randomly N individuals on L × L square lattice
with hard boundary conditions.

2. Select randomly one individual.
3. Select randomly a real number r ∈ [0, 1]. If adapta-

tion p is greater than r the individual will stay alive.
Otherwise it will die (N = N − 1) – go to 2.

4. Try to move the individual to an adjacent empty site.
If the move cannot be done then go to 2.

5. Try to find the partner to mate from nn of the new
site. If the partner was not found go to 2.

6. Parents die and 3 offspring are born (N = N + 1). Go
to 2.

One Monte Carlo step MCS consists of repeating N
times steps 2–6 of the algorithm. In the following sec-
tions we will investigate this general model using two
rules (“blind ant” and “myopic ant”) in steps 4–5 and
two strategies (“to stay” and “to go”) in step 6.

3 Mean field approach

In papers [19,20] some analytical (mean field type) re-
sults for the “myopic” and “blind ants” in the case of an
infinite lattice (L = ∞) were presented. However, Monte
Carlo simulations and real population dynamics take place
always in finite regions. It is well known by biologists that
survival chances decrease for smaller areas [17]. For this
reason the lattice size is taken into account in our analyt-
ical calculations.

Let us first recall the mean-field approach for the in-
finite lattice [19,20]. In the model we have two processes
that can change the population size:

(a) death of an individual with probability 1 − p (i.e.
N → N − 1);

(b) birth of three offspring and death of their parents
with probability pR1R2 (i.e. N → N + 1) because an in-
dividual will survive with probability p, then move with
probability R1, and then find a partner to mate with prob-
ability R2.

Hence, the evolution equation is the following:

c(t+ 1) = c(t) + c(t) [pR1R2 − (1− p)] . (1)

In the mean field approach for the “blind ant” R1 =
1− c(t) and R2 = 3

4c(t), while in the case of the “myopic
ant” R1 = 1− c(t)4 and R2 = 1− (1− c(t))3.

From equation (1) we can calculate (analytically for
the “blind ant” and numerically for the “myopic ant”) the
critical probability p∗ below which the population is con-
victed to extinction. Above this critical value of p∗ we can
find fixed points of equation (1) i.e. the minimum viable
population MVP (unstable) and the carrying capacity K
(stable). These calculations and respective flow diagrams
were presented in references [19,20].
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To include lattice size dependence in our calculations
we divide the lattice into four regions with different proba-
bility for movement and mating. For example, an individ-
ual from the corner of a lattice has only two neighboring
sites to make a move, while an individual from the middle
has four neighbors. Each of the four regions has a different
size. The ratio between region and lattice size gives us the
probability that an individual from a given region will be
chosen:

We can modify the evolution equation (1) both for the
“myopic ant” and the “blind ant” and calculate the crit-
ical survival probability p∗(L), as well as fixed points K
and MVP. Since all these calculations are very simple we
will not present them in detail. For the “blind ant”, af-
ter simple algebraic transformations, we can rewrite the
evolution equation (1) in the following way:

c′ − c
c

=
4
L2

[
2
3
p(1− c)c− (1− p)

]
+

4(L− 2)
L2

[
25
36
p(1− c)c− (1− p)

]
+

4(L− 3)
L2

[
35
48
p(1− c)c− (1− p)

]
+

(L− 4)2

L2

[
3
4
p(1− c)c− (1− p)

]
= −Apc2 +Apc+B(p− 1), (2)

where

A =
27L2 − 11L+ 13

36L2
, B =

L2 + 12
L2

· (3)

There is one stable fixed point c = 0 of equation (2),
which exists for all p. Two other fixed points are solutions
of the following equation:

c′ − c = −Apc2 +Apc+B(p− 1) = 0 (4)

and exist only for p ≥ p∗(L), where p∗ is the solution of
(Ap)2 + 4ABp(p − 1) = 0. For the survival probability
p smaller then p∗(L) the only solution of equation (2) is
c = 0. This means that below a certain critical value of p =
p∗(L), the population will become extinct independently
of its initial concentration. If we plot the critical survival
probability p∗ versus lattice size L (Fig. 1) we can see that
it is more difficult to survive on a smaller area. This fact
is well known to biologists [17] and agrees with simulation
results presented in [16,20].
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Fig. 1. Analytical dependence between lattice size L and crit-
ical survival probability p∗ for the “blind ant”.
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Fig. 2. Flow diagram for the “blind” and the “myopic ant”
(L = 100). Dashed line represents the unstable steady state,
i.e. MVP, and the solid line represents the stable steady state,
i.e. K.

In order to construct a flow diagram for the “blind
ant” we just have to find zeros of a polynomial of order
2. Unfortunately, for the “myopic ant” we have a poly-
nomial of order 7. Since we cannot solve it analytically,
we solve it numerically. In this case we have also found
that the critical survival probability is larger for smaller
territories, which means that it is harder to survive there.
Flow diagrams for the “blind” and the “myopic ant” are
presented in Figure 2. In both cases we have found exis-
tence of the critical survival probability p∗, the minimum
viable population MVP and the carrying capacity K. In
both cases p∗ decreases with L. Thus both “ant” rules are
proper to model population dynamics. However, as we can
see in Figure 2 the more active population (“myopic ants”)
has higher chances for survival, which is quite obvious.
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Fig. 3. Evolution of the “myopic ant” population for L = 100,
initial concentration c(0) = 0.7 and different values of p.

It is worth noticing here that the same model with
asexual reproduction will not produce the existence of the
MVP. For such a case the mean field approach yields the
critical survival probability p∗ = 0.5 (for p > p∗ the pop-
ulation will always reach the carrying capacity). This re-
sult suggests that in our model the Allee effect is gener-
ated mainly by difficulties with finding a partner to breed,
which is treated as the main cause of the inverse density
dependence [5].

4 Monte Carlo simulations

Until now we have investigated our model using only the
mean field approach. We have seen that larger territories
are preferred by populations since it is easier to survive
in such environments. We have also shown, what was ex-
pected, that individuals should try to behave like “myopic
ants” to increase the survival probability of the popula-
tion. However, a question concerning the migration strat-
egy remained that we could not answer using MFA: is it
profitable for individuals to stay at the parental area or
not? In reference [20] the problem “to stay or to go” was
touched for the case of the “blind ant”, but no clear-cut
answer was given.

Let us start with the “myopic ant”, since this rule gives
higher chances for survival. In Figure 3 we present sim-
ulation results for the square lattice 100 × 100 and ini-
tial concentration c(0) = 0.7. It can be seen that for this
value of c(0) the survival probability p = 0.6 is enough
for the population to survive. For p = 0.4 the population
becomes extinct already after 10 MCS. Moreover, if p is
large enough for the population to survive, the popula-
tion reaches a certain carrying capacity K(p). Analogous
behavior we can found for all values of c(0).
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Fig. 4. Evolution of the “myopic ant” population for L = 100,
survival probability p = 0.75 for different values of initial the
concentration.
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Fig. 5. Flow diagram for the “myopic ant”. Dashed line rep-
resents the unstable steady state, i.e. MVP, and the solid line
represents the stable steady state, i.e. K.

Let us now keep the survival probability constant e.g.
p = 0.75 (Fig. 4) and start from different values of c(0).
It can be seen that independently of the initial concentra-
tion population reaches the same carrying capacity if only
c(0) > MV P . For the initial concentration below MVP
the population dies out. These observations are in agree-
ment with MFA results. Similar results for the “blind ant”
were already presented in [20]. Repeating simulations for
different c(0) and p we can construct flow diagrams (see
Fig. 5). As can be seen, simulations agree very well with
MFA results.

One very important issue should be mentioned here.
In simulations (like in the real life) it can happen that
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Fig. 6. Analytical (“to go”) and Monte Carlo (“to stay”) flow
diagrams for the “blind ant” . Dashed lines represent the un-
stable steady states, i.e. MVP, and solid lines represent the
stable steady states, i.e. K.

even if the initial concentration c(0) and fitness p are the-
oretically large enough to survive, the population extinct.
For example, consider the “myopic ant” population with
c = 0.2 and p = 0.7 (see Fig. 5). Looking at MFA results
we see that the population should stay alive, but in MC
simulations 10 out of 100 populations become extinct. So,
how should we define MVP in Monte Carlo simulations?
We used the simplest definition: MVP is such a concen-
tration, that for a given p 100% (in our case 100 out of
100) of populations survive. This seems to be a very nat-
ural definition, but if we increase precision of calculations
to 1000 populations this definition will give us different
MVP. This is one of the reasons for which it is very difficult
to precisely define the critical concentration for the real
living population. For example Shaffer defined MVP as a
concentration below which a population has 99% chances
to survive for a period of 1000 years [2]. This definition is
very tentative, but still no better one has been found. At
this point we can see that MC simulations are much closer
to real life than MFA, in which MVP is just an unstable
fixed point of the evolution equation.

Now we will investigate the migration strategies. The
first analyzed strategy (“to stay”) is realized by putting
two offspring in the sites of their parents and the third one
in the place from which the initiating individual came. In
the second strategy (“to go”) offspring are distributed ran-
domly on the lattice. Flow diagrams for the first strategy
are presented in Figure 5 (for the “myopic ant”) and in
Figure 6 (for the “blind ant”). In both cases the “to stay”
strategy increases probability p∗, i.e. the population has
to be better adapted in order to survive. However, if it is
better adapted its MVP is lower. For example, the “my-
opic ant” with p = 0.8 has MVP (“to go”) = 0.1, while
MVP (“to stay”) = 0.016. This means that the popula-
tion with the “to go” strategy needs 6 times more in-
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Fig. 7. Evolution of concentration for the “to stay” strategy
and the “blind ant” for p = 0.9 and c(0)=0.1. In the inset
spatial configuration after 100 MCS is presented.

dividuals to survive than the population with “to stay”
strategy. This results suggest the following optimal strat-
egy: if the environmental conditions are hard it is better
to migrate from the parental area, but if the population
is well adapted it is better to stay. This result is in agree-
ment with biological observations [10]. Moreover, for all
obtained results there are only quantitative differences be-
tween the “blind ant” and the “myopic ant”.

In Figures 5 and 6 we presented MFA results only for
the “to go” strategy. This is not a coincidence. The mean-
field approach cannot be used for the “to stay” strategy,
see Figure 7 where the time evolution of concentration for
the “blind ant” with the “to stay” strategy is presented.
We can see that initially the population decreases, like in
the “to go” case, but after some time it starts to increase.
This is very different from the results for the “to go” strat-
egy (see Figs. 3 and 4), where only monotonic curves were
observed. In the inset of Figure 7 the configuration af-
ter 100 MCS is presented. Clusters that have formed are
clearly visible. It is worth noticing that if the survival
probability p is constant in our model (as in this paper;
we do not study environmental changes) then once a clus-
ter is formed it will eventually spread to the whole lattice.
A similar clustering effect was observed in [12], however,
in their model the clusters grew in size despite the vari-
able survival probability. The cluster growth in our model
is quite easy to explain: even if the global concentration
is very low, the local density is very high and prevents
the Allee effect. The same non-monotonic behavior and
clustering in spatial configuration was observed for the
“myopic ant” with the “to stay” strategy. Due to the fact
that local concentration in the “to stay” case is different
from global one the MFA cannot be used.
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5 Conclusions

We have presented the generalized model describing pop-
ulation dynamics without selection pressure. We have
compared four subcases of the model: “blind ant” with
migration strategy “to go”, “blind ant” with migration
strategy “to stay”, “myopic ant” with migration strat-
egy “to go”, and “myopic ant” with migration strategy
“to stay”. Wherever it was possible we derived analytical
(MFA) results, which agreed very well with those obtained
from our computer simulations. On the basis of results pre-
sented in Sections 3–4 we have found the optimal strategy
for the population which agrees with ecological data (for
review see [10]).

Analytical flow diagrams as well as those obtained
from Monte Carlo simulations show that in order to in-
crease population survival chances individuals should be-
have like “myopic ants”.

Moreover, if the population is well adapted to the en-
vironment, i.e. p > p∗(“to stay”), individuals should stay
in the parental area. However if p < p∗(“to stay”), the
population should migrate. Such a behavior was indeed
observed in real biological systems.

We have also found analytically the dependence be-
tween the area size and the critical survival probability
and showed that it is easier to survive in a larger region.
This phenomenon is well known in biology and was de-
scribed by MacArthur and Wilson already in 1967 [17].

After defining the MVP in a Monte Carlo simulation
we have argued that the MFA cannot describe reality as
good as a Monte Carlo simulation. This is well known by
physicists, and proves the need for microscopic models in
theoretical biology.
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20. A. Pȩkalski, K. Sznajd-Weron, Phys. Rev. E 63, 031903

(2001).
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